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Photon statistics of a bad-cavity laser near threshold
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Abstract. A simple model of a bad-cavity laser is presented based on Haken’s master equation for N
pumped two-level atoms in a cavity. Via adiabatic elimination of fast variables the whole photon statistics
is solved analytically near threshold. It is shown that the second order coherence function g(2)(0) has a
very different behavior near threshold for a bad-cavity laser compared to a good-cavity laser. The power
spectrum illustrates nicely the different time scales involved in the dynamics.

PACS. 42.50.Ar Photon statistics and coherence theory – 42.55.Ah General laser theory

1 Introduction

The theoretical investigation of laser models had its high
time about 25 years ago with important contributions
by Lax, Louisell, Scully, Lamb, Weidlich and Haken and
many others [1–4]. The so-called bad-cavity limit has be-
come interesting in recent years in the investigation of mi-
cro lasers and future quantum-dot or quantum-well lasers.
First experiments [5] and a thorough theoretical investi-
gation [6] have set in. Here a simple model for a bad-
cavity laser is presented that shows some of the main dif-
ferences in the photon statistics and in the laser linewidth
to the well-known good-cavity results. A simple model
for a single-mode laser takes into account five degrees
of freedom: one mode of the electromagnetic field (am-
plitude and phase), the macroscopic inversion and the
macroscopic polarization (amplitude and phase). There
is a typical time scale for each of these degrees of free-
dom connected to damping constants: τF = 1/κ for the
electromagnetic field, τP = 1/γP for the polarization, and
τI = 1/γI for the inversion. One may divide single-mode
lasers in four classes [6] according to the relation between
these damping constants:

1. γP , γI � κ – dye laser, for example,
2. γP � κ ∼ γI – helium-neon, argon-ion,
3. γP � κ� γI – ruby, semiconductor, Nd:YAG,
4. κ � γP , γI – near-infrared noble-gas lasers and many

far-infrared lasers.

Bad-cavity lasers constitute the fourth class.
The author presents an investigation based on Haken’s

master equation for N incoherently pumped two-level
atoms in a cavity which are coupled to a single mode of
the field. The time-scale separation κ � γI , γP gives rise
to a fast decay of the mode to an adiabatic equilibrium
with the atomic variables. After this fast decay the mode
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follows the slow dynamics of the atoms adiabatically. By
adiabatic elimination of the mode the author arrives at a
Fokker-Planck equation for the macroscopic atomic vari-
ables which is valid for a large number of atoms in a bad
cavity. A very similar approach has been done by Lugiato
et al. [7] for the absorptive optical bistability to obtain
the fluorescent spectrum and photon statistics. In this
investigation the main concern will be the steady state
photon number distribution near threshold. Via further
adiabatic elimination this may be obtained analytically
for some relevant limits of the parameters. Above thresh-
old an exhaustive investigation of the bad-cavity limit has
been done by Kolobov et al. [6] who have given analytic
results for amplitude and phase fluctuations. The author
tries in this work to regain some of their results with a
much simpler model. This simplification makes an inves-
tigation near threshold possible, however some important
effects have to be neglected (e.g. spontaneous decay of the
atoms to other levels). The role of pumping statistics for
the noise in laser output has been pointed out by many au-
thors [6,8] and different noise reduction mechanisms have
been suggested [9]. The author limits himself to Poissonian
pumping statistics in this work being aware that regular
pumping might change some of the results. For the lasers
used in experiments [5] surely Poissonian pumping should
be assumed. However many effects are neglected in this
investigation that may play a role for photon statistics of
a real bad-cavity laser in experiment.

The paper is organized as follows. After introduc-
ing Haken’s laser model in Section 2 the mode is elimi-
nated adiabatically in the bad-cavity limit in Section 3.
A Gaussian approximation is made in Section 4 which is
valid above threshold. The second-order coherence and the
linewidth are discussed in this approximation. In Section
5 the conditions for a time-scale separation between the
dynamics of the polarization and the inversion are inves-
tigated. If these conditions are satisfied the fast variable
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may adiabatically eliminated and we remain with one sin-
gle degree of freedom ruling the dynamics. The conditions
for time-scale separation are often satisfied near threshold.
In Section 6 the adiabatic elimination of fast variables
near threshold is carried out. The total photon-number
distribution is derived analytically and the second-order
coherence g(2)(0) is discussed and compared to the re-
sults of the Gaussian approximation. The dynamical be-
havior of fluctuations is discussed in Section 7 where the
second-order coherence g(2)(t) and its Fourier transform
the power spectrum S(ω) are computed numerically in the
adiabatic elimination regime and an analytical expression
is given for the Gaussian approximation which is valid
above threshold.

2 Haken’s laser model

We consider N effective two level atoms inside a cavity
coupled to one mode of the electromagnetic field. Each
atom is damped independently by its own heat bath and
pumped incoherently. The time evolution of the statisti-
cal operator of the N atoms and the resonator mode are
described by Haken’s master equation [1,4]

∂

∂t
ρ =

1

i~
[HAF , ρ] + ΛFρ+ ΛAρ. (2.1)

The interaction Hamiltonian in dipole and rotating-wave
approximation is

HAF = i~g
(
J−b

† − J+b
)

(2.2)

where b, b† are the creation and annihilation operators of

the resonator mode and J± =
∑N
i=1 σ± are the operators

of the macroscopic polarization of the atoms. The first
damping term ΛFρ describes the damping of the mode
due to losses through the mirrors. It is given by the well-
known quantum optical master equation [1–3,10–12]

ΛFρ = κ
([
b, ρb†

]
+
[
b ρ, b†

])
. (2.3)

Damping and pumping of the atoms is described by inde-

pendent heat baths for each atom ΛAρ =
∑N
i=1 Λiρ and

where Λi is the damping generator for one atom [1,10–12]

Λiρ =
γI

4
(1− 2σ0)

([
σ−, ρ σ+

]
+
[
σ− ρ, σ+

])
+
γI

4
(1 + 2σ0)

([
σ+, ρ σ−

]
+
[
σ+ ρ, σ−

])
+
(
γP −

γI

2

)
([σz, ρ σz ] + [σz ρ, σz]) . (2.4)

Here the σ+,σ− levels of the atom. The two damping con-
stants γI and γP are constrained by γI ≤ 2γP . Equality
holds when there are no phase destroying processes [1].
The last constant in equation (2.4) to be explained is the
so called unsaturated inversion σ0 which is the equilibrium
value of the inversion 〈σz〉equ = σ0 of one atom if there is
no coupling to the mode (g = 0). This parameter ranges
in −1/2 ≤ σ0 ≤ 1/2 and describes the pump strength.
Apart from rotating-wave and dipole approximation weak
coupling g � γI , γP , κ has to be assumed in (2.1).

2.1 Pumping mechanism

Relatively recently it was shown by many authors that
the fluctuations of the pumping mechanism play a cen-
tral role in laser photon statistics [6,8]. These investiga-
tions assume that inverted atoms are shot into a cavity
and start to interact with the cavity mode. The pumping
mechanism is described by a mean rate R (giving the mean
number of atoms arriving in the cavity per unit of time)
and the statistics of arrival times which may be Poissonian
if arrival times are assumed to be uncorrelated, regular if

the nth atom arrives at the time tn = t0 + n
1

R
, or any-

thing between these extremes. In the Haken model of the
laser no atoms are shot into the cavity and the number
of atoms is fixed. Still one can relate the rate R to the
unsaturated inversion by

R = γI
1 + 2σ0

1− 2σ0
· (2.5)

As every atom in the Haken model is pumped and damped
independently the excitation of one atom by the pump-
ing mechanism is not correlated to the excitation of other
atoms – the pumping statistics in the Haken model should
be assumed to be of Poissonian type.

2.2 Changing to a c-number representation

The master equation (2.1) contains information about
every individual atom, much more than needed. It can
be shown [1] that all information about collective atom
operators and the mode are described by a generalized
Fokker-Planck equation for a quasi-probability distribu-
tion P (β, β?, s, s?, sz; t) where the operators have been as-
sociated with c-numbers according to

J−, J+ ←→ s, s?

Jz ←→ sz

b, b† ←→ β, β?. (2.6)

Expectation values of the operators are connected to the
corresponding expectation values of the c-numbers by a
prescribed ordering of the operators

〈Jp+J
q
zJ

r
−b
†sbt〉 =∫

d2βd2sdsz s
?psqsrzb

?sbt P (β, β?, s, s?, sz; t). (2.7)

The evolution equation for the quasi-probability distribu-
tion P contains arbitrarily high derivatives. It reads

∂

∂t
P (β, β?, s, s?, sz; t) =

[LA + LF + LAF ] P (β, β?, s, s?, sz; t) (2.8)
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where the generators are given by

LA =
γI

4
(1− 2σ0)

×

[
∂

∂s
s+

∂

∂s?
s? +

(
exp

(
∂

∂sz

)
− 1

)
(N + 2sz)

]
+
γI

4
(1 + 2σ0)

[
∂

∂s
s+

∂

∂s?
s? +

(
exp

(
−

∂

∂sz

)
− 1

)
(N − 2sz)

+ 2N
∂2

∂s∂s?
+ 2

(
exp

(
−

∂

∂sz

)
− 1

)(
∂

∂s
s+

∂

∂s?
s?
)

+2
∂2

∂s∂s?

(
∂

∂s
s+

∂

∂s?
s?
)

+
∂4

∂s2∂s? 2
exp

(
∂

∂sz

)
(N + 2sz)

]
+
(
γP −

γI

2

)[ ∂2

∂s∂s?
exp

(
∂

∂sz

)
(N + 2sz) +

∂

∂s
s+

∂

∂s?
s?
]

(2.9)

LF = κ

[
∂

∂β
β +

∂

∂β?
β?

]
(2.10)

LAF = g

[
−
∂

∂β
s−

∂

∂β?
s? −

(
exp

(
−

∂

∂sz

)
− 1

)
(βs? + β?s)

−2sz

(
∂

∂s
β +

∂

∂s?
β?
)

+
∂2

∂s2
sβ +

∂2

∂s? 2
s?β?

]
.

(2.11)

The generalized Fokker-Planck equation (2.8) is the start-
ing point of this investigation [13]. The deterministic part
which includes only first-order derivatives yields for the
unsaturated inversion σ0 a critical value σc the so-called
critical inversion

σc =
κγP

2Ng2
· (2.12)

For weak pumping, σ0 < σc, the resonator mode is not
excited while above threshold, σ0 > σc, the equilibrium
photon number of the mode increases linearly with the
unsaturated inversion σ0. Due to the weak coupling we
have assumed in (2.1) we have

Nσc =
κγP

2g2
� 1. (2.13)

3 Bad-cavity limit

The dynamics of the model presented depends on the rela-
tive magnitude of the the damping constants γI , γP and κ
and the coupling constant g. In many lasers there is a time
scale separation such that the atoms relax to an adiabatic
equilibrium much faster than the resonator mode, hence
γI , γP � κ. Then the atomic dynamics may be eliminated
adiabatically as done by Risken [1,14] who has discussed
this case exhaustively. He derives a master equation for the
mode with the dynamics of a van-der-Pol oscillator. Lately
the opposite time-scale separation has become of interest
which is known as the bad-cavity limit κ� γI , γP . In that
case we may adiabatically eliminate the resonator mode.
The remaining dynamics will depend only on atomic vari-
ables. The formalism of adiabatic elimination as used sev-
eral times in this work is given in [15–17]. We are inter-
ested only in the slow dynamics of the atoms and assume

the mode always to be in adiabatic equilibrium to the
atoms, i.e. the quasi-probability distribution P is approx-
imated by

P (β, β?, s, s?, sz; t) = Pad(β, β
?|s, s?, sz)Pred(s, s

?, sz; t)
(3.1)

where Pad describes the adiabatic equilibrium of the mode
with respect to given values for the atomic variables and
Pred is the reduced quasi-probability density of the atomic
variables,

Pred(s, s
?, sz ; t) =

∫
d2β P (β, β?, s, s?, sz; t). (3.2)

The adiabatic equilibrium is determined by[
∂

∂β
(κβ − g s) +

∂

∂β?
(κβ? − gs?)

]
Pad(β, β

?|s, s?, sz) = 0

(3.3)

which takes into account that part of the interaction which
depends on the atomic variables only parametrically. This
leads to a delta-peaked distribution

Pad(β, β
?|s, s?) = δ2(β −

g

κ
s). (3.4)

Thus the resonator mode has the same statistics as the
atomic polarization in the sense

〈βmβ?n〉 =
( g
κ

)m+n

〈sms? n〉. (3.5)

The reduced dynamics is given by the generalized Fokker-
Planck equation

∂

∂t
Pred(s, s

?, sz; t) = LPred(s, s
?, sz; t) (3.6)

with

L = LA +
2g2

κ

×

[(
1− exp

(
−

∂

∂sz

))
ss? −

(
∂

∂s
s+

∂

∂s?
s?
)
sz

+
1

2

(
∂2

∂s2
s2 +

∂2

∂s? 2
s? 2

)]
. (3.7)

This is still a very unhandy equation for calculations with
its infinitely high derivatives even if we are interested only
in steady state solutions. However, we can simplify this
equation considerably by truncating all higher derivatives
than second-order ones. In order to give a self-consistent
argument why this truncation is trustworthy we refer to a
result that will be obtained in the following sections with
the truncated Fokker-Planck equation. It will be shown
that the threshold values at σ0 = σc of the polarization
and the inversion are given by

rc = 〈s?s〉 = Nσc

√
N

γI

2γP
(3.8)

Nσc − zc = 〈sz〉 = Nσc −

√
N
γP

2γI
· (3.9)
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We may introduce reduced variables S, S? and z

s = S
√
rc

s? = S?
√
rc

sz = Nσc + z zc (3.10)

such that near threshold the magnitudes of the dimen-
sionless reduced variables are of the order of one. Upon
using

N � Nσc � 1, |σ0| � 1 (3.11)

we may simplify the generator L given by (3.7) to

L = γP

{
−
N

2rc

[
∂

∂S
S +

∂

∂S?
S?
]
z +

N

2z2
c

∂

∂z
[z − p+ S?S]

+
N

rc

∂2

∂S∂S?
+
N2

8z4
c

∂2

∂z2

}
+O

(√
1

N
,

1

Nσc

)
. (3.12)

A new parameter p has been introduced in the first line of
(3.12) which replaces the unsaturated inversion and will
be called pump strength further on

p =

√
2NγI
γP

(σ0 − σc) . (3.13)

The threshold appears at p = 0. It will be convenient to
employ polar coordinates for the polarization

S =
√
r exp(iφ)

r = S?S (3.14)

and to rescale the time

t −→ t̃ =
γPN

rc
t. (3.15)

We arrive at the generator

L = Lr + Lφ (3.16)

Lr = −
∂

∂r
[rz + 1] + α

∂

∂z
[z − p+ r]

+
∂2

∂r2
r + α

γI

2γP

∂2

∂z2
(3.17)

Lφ =
1

4

∂2

∂φ2

1

r
(3.18)

where

α =
rc

2z2
c

=

√
κ2γ3

I

8Ng4γP
· (3.19)

With the generators (3.16–3.18) the Fokker-Planck equa-
tion (3.6) contains all important information about the
system in steady state. Further adiabatic eliminations of
either the polarization intensity r or the reduced inversion

z may be carried out in certain limits (Sects. 5 and 6). The
steady state quasi-probability distribution Pstat does not
depend on the phase φ and is a solution to

LrPstat(r, z) = 0. (3.20)

The phase-diffusion part Lφ will be taken into account
only when we are discussing the laser linewidth in Sec-
tion 4.3.

4 Gaussian approximation

The Gaussian approximation consists in first solving the
deterministic part of the Fokker-Planck equation (3.6) and
treat the fluctuations around this dynamics represented
by the second order derivatives as small perturbations.
Using radial coordinates is of great advantage here, first
because of the symmetry and second because the net force
of the thermal fluctuations (due to the coupling of the
atoms to some pumping reservoir) on the intensity of the
polarization shows up in the deterministic part (the term

−
∂

∂r
in the first line of (3.17)). This approximation is

surely good well above threshold and it will show to be
of some value even near threshold. Due to the inclusion
of the net force of thermal fluctuations in the drift first
moments are treated correctly near threshold. High above
threshold however this net force may justly be neglected
without much influence on the first moments.

4.1 Deterministic dynamics

The deterministic part of the Fokker-Planck equation is
obtained by taking into account only the drift terms in
(3.17). The mean reduced inversion and the mean po-
larization are then described by deterministic equations
(writing r0 instead of 〈r〉)

d

dt̃
r0 = r0z0 + 1

d

dt̃
z0 = α [p− z0 − r0] . (4.1)

The steady state of the reduced inversion and the polar-
ization is reached at

r0 =
p

2
+

√
p2

4
+ 1

z0 =
p

2
−

√
p2

4
+ 1. (4.2)

Far below and far above threshold, |p| � 1, these solutions
are linear in the pump strength. Far below threshold the
mean polarization intensity r0 is almost zero and the mean
reduced inversion z0 increases with p. Far above threshold
the intensity increases and the reduced inversion is almost
zero. Near threshold p ≈ 1 the action of the net force of
fluctuations is responsible for the smooth connection of
the linear parts (see Figs. 1, 2).



S. Gnutzmann: Photon statistics of a bad-cavity laser near threshold 113

 pump strength   p
1050-5-10

10

6

2

m
ea

n 
po

la
riz

at
io

n 
in

te
ns

ity
   

r 0

Fig. 1. Mean polarization intensity in Gaussian approxima-
tion as a function of the pump strength p (proportional to the
mean photon number).

Fig. 2. Mean reduced inversion in Gaussian approximation
as a function of the pump strength p.

4.2 Fluctuations of the photon number

Assuming that the steady state quasi-probability distribu-
tion P (r, z) which solves (3.20) will be peaked around the
steady state solution (4.2) of the deterministic dynamics
we may linearize (3.17). We set

r = r0 +∆r

z = z0 +∆z, (4.3)

where r0 and z0 are given by (4.2). The new variables ∆r
and ∆z are considered as small numbers. After transform-
ing the generator Lr given by (3.17) to the new variables
we keep only the lowest nonvanishing powers. The lin-
earized generator found in this way is given by

Lr,lin =
∂

∂∆r

[
1

r0
∆r − r0∆z

]
+α

∂

∂∆z
[∆z +∆r]

+
∂2

∂∆r2
r0 + α

γI

2γP

∂2

∂∆z2
· (4.4)

This leads to a steady-state distribution P (r = r0 +
∆r, z = z0 + ∆z) which is given by a Gaussian centered
at r = r0, z = z0 with second moments

〈∆r∆z〉0 =
r2
0

(
γI

2γP
− αr0

)
r2
0 + 1 + α (r0 + r3

0)

〈∆r2〉0 = r2
0 (〈∆r∆z〉0 + 1)

〈∆z2〉0 = 〈∆r∆z〉0 +
γI

γP
· (4.5)
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Fig. 3. Second-order correlation function g(2)(0) in Gaussian
approximation as a function of the pump strength p for some

values of the parameters
2γP
γI

and α: (a)
2γP
γI

= 2, α = 0.008;

(b) 2, 0.01; (c) 20, 0.008; (d) 20, 0.01; (e) 2, 100; (f) 50, 1;
(g) 2, 1.

The photon statistics may be characterized by the second-
order correlation function [11,18]

g(2)(0) =
〈b†b†bb〉

〈b†b〉2

= 1 +
Var

(
b†b
)
− 〈b†b〉

〈b†b〉2

=
〈r2〉

〈r〉2
· (4.6)

The last equality is due to the equivalence of the quasi-
probability distribution used here to the so called P -
function. The moments of the P -function are equal to the
normally ordered moments of the photon creation and an-
nihilation operators. This second-order correlation g(2)(0)
is defined in such a way that it gives g(2)(0) = 1 for a
Poissonian photon-number distribution like in a coherent
state. A Poissonian distribution has Var

(
b†b
)

= 〈b†b〉. The

photon statistics is called sub-Poissonian if g(2)(0) < 1
and super-Poissonian for g(2)(0) > 1. In a thermal state
g(2)(0) = 2. In the Gaussian approximation made in this
section the correlation function is given by

g(2)(0) = 2 + 〈∆r∆z〉0. (4.7)

In Figure 3 the correlation function is plotted as a func-
tion of the pump strength p for some values of the two

parameters
γI

2γP
and

rc

2z2
c

. Well below threshold the pho-

ton statistics has thermal character g(2)(0) = 2 for any
value of the parameters. The behavior of the second-order
correlation near and above threshold strongly depends on

the parameter α =
rc

2z2
c

. For large values α � 1 there is

a fast transition to Poissonian statistics near threshold.
This is the same behavior as is shown by Risken’s mas-
ter equation with the dynamics of a van-der-Pol oscillator
[1,14,19]. However for small values α� 1 a very different
and new behavior is seen. Near threshold the second-order
correlation does not show a fast decay but may even rise.
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Well above threshold p � 1 there is still a transition to
Poissonian statistics, but the decay of g(2)(0) to one is
only proportional to 1/p so that even well above threshold
super-Poissonian statistics may be observed. This Gaus-
sian approximation is surely not strictly satisfactory near
threshold where the neglected part in the deterministic
part of the Fokker-Planck equation (4.4) is of the same
order of magnitude as the terms kept. Well above or be-
low threshold |p| � 1 the solution is self-consistent and
we will see in the following treatment (Sect. 6) that even
near threshold this Gaussian approximation has the right
qualitative behavior.

4.3 Linewidth of the laser

The linewidth ∆ν of the laser above threshold is connected
to the phase-diffusion generator

Lφ =
1

2
Dφ

∂2

∂φ2
(4.8)

given by (3.18). This phase diffusion sets the time scale
on which an initially prescribed phase is destroyed. The
linewidth ∆ν is given by the inverse of this time scale:

∆ν =
∂t̃

∂t
Dφ

=
N

2

γP g
2

κ2I
, (4.9)

where I is the photon number inside the cavity

I =
g2

κ2
rcr. (4.10)

This result is in agreement with the result of [5,6]. The
phase diffusion of a bad-cavity laser is seen to be reduced

by a factor
γ2
P

κ2
� 1 in comparison to the Schawlow-

Townes result [3,20] valid for good cavities given by

∆νST =
N

2

g2

γPI
· (4.11)

5 Time-scale separation near threshold

In this section the time-scale separation in the dynam-
ics between the polarization intensity r and the reduced
inversion z is studied in order to give the conditions for
further adiabatic elimination of fast variables from the
Fokker-Planck equation (3.6). After eliminating the res-
onator mode assuming κ � γI , γP one would think that
the time-scale separation between the dynamics of the po-
larization and of the inversion is determined from the re-
lation between their damping constants γP and γI . How-
ever due to the nonlinear coupling in this laser model it
is a bit more complicated. We have to look closer at the
deterministic equations (4.1) to investigate the time-scale

separation. There are just two parameters that may deter-
mine the time scales of the dynamics: the pump strength
p and the ratio α = rc/(2z

2
c ) By a first estimate on ac-

count of the deterministic equations the typical inverse
time scale for the dynamics of the reduced inversion z is
given by α whereas the typical inverse time scale for the
polarization r is given by equilibrium value of the reduced
inversion z0 which depends on the pump strength p (we
are interested only in the dynamics very near steady state
here). So above threshold when z tends to zero the polar-
ization intensity slows down. More strictly the time scales
may be derived by looking at the short time behavior of
the deterministic dynamics given by the linearized version
of (4.1)

d

dt̃
δr(t̃) = z0δr(t̃) + r0δz(t̃) + r0z0 + 1

d

dt̃
δz(t̃) = α

(
+ [p− z0 − r0]− δr(t̃)− δz(t̃)

)
, (5.1)

where we have written r0(t) = r0 + δr(t) and z0(t) = z0 +
δr(t) and have neglected higher orders of δ. The constants
r0 and z0 have arbitrary values here (not necessarily the
steady state solutions of the deterministic dynamics). The
typical inverse time scales of the dynamics near r0 and z0

are given by the eigenvalues of the homogeneous part

λ± = −
α− z0

2
±

√(
α− z0

2

)2

− α (r0 − z0). (5.2)

As a condition for time-scale separation the square root
in these eigenvalues must be real

r0

α
<

1

4

(
1 +

z0

α

)2

. (5.3)

Now we assume that the steady state distribution of the
full Fokker-Planck equation (3.17) is peaked around the
equilibrium point of the deterministic dynamics given
by (4.2) in such a way that the eigenvalues λ± do not
change within the width of the distribution. Around these
steady states the inverse time scales are given by setting

z0 = −
1

r0
in (5.2).

λ± =
1

2

(
−α−

1

r0
±

√
(α−

1

r0
)2 − 4αr0

)
. (5.4)

In Figure 4 the contours of λ−/λ+ = const are shown
to illustrate the regions in the space spanned by r and
z where there is a time-scale separation. The two graphs
shown there are plotted in scaled variables r/α and z/α.
Above the thick contour (λ−/λ+ = 1) the condition (5.3)
for the two eigenvalues λ± does not hold. There is no
time-scale separation in this region. By looking on these
inverse time scales it can be seen that well below threshold
r0 � 0 there will always be a good time-scale separation
whereas well above threshold the two inverse time scales
become complex conjugate of one another. Near threshold



S. Gnutzmann: Photon statistics of a bad-cavity laser near threshold 115

z
0-20-40-60-80-100-120

60

50

40

30

20

10

z
0-0.1-0.2-0.3-0.4

0.2

0.15

0.1

0.05

0

inversion  z/α

po
la

riz
at

io
n 

  r
/α

151050

100

1

5 10 50

no time-scale separation

no
 ti

m
e-

sc
al

e 
se

pa
ra

tio
n

Fig. 4. Illustration of time-scale separation. The two graphs show the contours of |
λ−
λ+
| = const for const = 1, 5, 10, 50, 100 in

rescaled variables r/α and z/α. The right graph is a magnification of the region near the origin. The thick curve with const = 1
separates the region of space where λ± become complex conjugate of one another. The thin line gives the mean values of the
polarization intensity and the reduced inversion at threshold in the Gaussian approximation (that is r0 = 1, z0 = −1) for
arbitrary value of α.

r ≈ 1 we have time scale separation when either α �
1/10 or when α� 10. It may be shown that the variable
connected to fast decay to equilibrium is the polarization
r for α� 1/10 whereas for α� 10 the reduced inversion
z is the fast variable. In these cases we may carry out a
further adiabatic elimination to arrive at a Fokker-Planck
equation in one single variable which is always solvable
analytically.

6 Adiabatic elimination of fast variables near
threshold

If the condition for time-scale separation near threshold
given in the last section α � 1/10 or α � 10 is satisfied
our Fokker-Planck equation

∂

∂t̃
P (r, z; t̃) = LrP (r, z; t̃) (6.1)

may be simplified considerably by adiabatic elimination of
the fast variable. However dynamics will be treated con-
sistently only for such distributions P (r, z; t̃) which are
near the stationary distribution and are peaked around
the steady state solution of the deterministic equations.
In order to carry out the adiabatic elimination we sepa-
rate the generator Lr into a part LP which describes the
polarization intensity and a second part LI for the reduced
inversion:

Lr = LP + LI

LP = −
∂

∂r
[rz + 1] +

∂2

∂r2
r (6.2)

LI = α

[
∂

∂z
(z + r − p) +

γI

2γP

∂2

∂z2

]
. (6.3)

We will treat the two cases of fast inversion and fast po-
larization separately and give the stationary distributions
in both cases.

6.1 Fast inversion-slow polarization

If
rc

2z2
c

� 10 inversion is fast near threshold and may be

eliminated adiabatically. We may assume that the po-
larization remains constant while inversion goes to its
adiabatic equilibrium and may therefor write the quasi-
probability distribution as product

P (r, z; t̃) = Pad(z|r)P (r; t̃). (6.4)

The adiabatic equilibrium Pad(z|r) with a given polariza-
tion r is determined by

LIPad(z|r) = 0. (6.5)

This gives a Gaussian distribution

Pad(z|r) =

√
γI

γP
π exp

(
−
γP

γI
(z + r − p)2

)
(6.6)

with a mean value

〈z〉ad(r) = p− r. (6.7)

The slow dynamics of the distribution of the polariza-
tion P (r; t̃) is to lowest order described by the reduced
dynamics

∂

∂t̃
P (r; t̃) = `PP (r; t̃) (6.8)

where the generator is `P is a averaged version of LP (6.3)

`P =

∫
dzPad(z|r)LP

= −
∂

∂r
[r (p− r) + 1] +

∂2

∂r2
r. (6.9)

This is the generator of a van-der-Pol oscillator. The gen-
erated dynamics is equivalent to the well-known one-mode
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Fig. 5. Stationary probability distribution of the polarization
intensity Pstat(r) (proportional to photon number distribution)
for slow polarization (α� 10).

laser in a good cavity. The stationary distribution is easily
derived

Pstat(r) =
1

N
exp

(
−

1

2
(r − p)2

)
(6.10)

where the normalization is given by

N =

√
π

2

(
1 + erf

(
p
√

2

))
. (6.11)

The stationary distribution Pstat(r) is shown in Figure 5
for some values of the pump strength p near threshold.
The polarization intensity r is connected to the photon
number I by

I = Icr, (6.12)

Ic =
g2

κ2
rc =

γP

2κ

√
N

γI

2γP
,

so to get the photon number distribution we just have to
rescale Pstat(r) appropriately. The stationary distribution
Pstat(z) of the reduced inversion z is obtained by integra-
tion

Pstat(z) =

∫
drPad(z|r)Pstat(r)

= C

1− erf

 2γP
γI

(z − p)− p√
2
(

2γP
γI

+ 1
)

 exp

(
−

γP

2γP + γI
z2

)
,

C =

√
γP

π (2γP + γI)

1

erf
(
p√
2

)
+ 1
· (6.13)

The mean polarization intensity, photon number and re-
duced inversion are easily derived from the distributions

  pump strength p
420-2-4

5

3

1

<r>

Gaussian Approximation

Fig. 6. Mean polarization intensity 〈r〉 (proportional to mean
photon number) as a function of the pump strength p for slow
polarization (α � 10). The thin line gives the result of the
Gaussian approximation.

(6.10) and (6.13)

〈r〉 = p+
1√

π
2

(
1 + erf

(
p√
2

)) exp

(
−
p2

2

)
〈z〉 = p− 〈r〉

〈b†b〉 = Ic〈r〉 . (6.14)

In Figure 6 the mean polarization intensity 〈r〉 is plotted
as a function of the pump strength. The deviation from
the Gaussian approximation is seen to be 20 percent near
threshold. The variations are also easily calculated

Var (r) = 1 +
p2

4
−
(
〈r〉 −

p

2

)2

Var (z) = Var (r) +
γI

2γP

Var
(
b†b
)

= I2
cVar (r) . (6.15)

In Figure 7 the second-order correlation function g(2)(0) is
shown. Near threshold it shows the well-known behavior
of a good-cavity laser, i.e. the dropping from the value
g(2)(0) = 2 indicating thermal fluctuations of the photon
number below threshold to g(2)(0) = 1 indicating Poisson
statistics like a coherent state.

6.2 Fast polarization-slow inversion

Now we assume α� 1/10 [21]. Near threshold the polar-
ization intensity is then a fast variable that we eliminate
adiabatically in the same way as the reduced inversion
has been eliminated in the previous subsection. The quasi-
probability distribution is approximated by a product

P (r, z; t̃) = Pad(r|z)P (z; t̃). (6.16)



S. Gnutzmann: Photon statistics of a bad-cavity laser near threshold 117

pump strength p
6420-2-4-6

2

1.4

1

g  (0)(2)

Gaussian Approximation

Fig. 7. Second-order correlation function g(2)(0) as a function
of the pump strength p for slow polarization (α � 10). The
thin line gives the result of the Gaussian approximation.

and the adiabatic equilibrium of the polarization intensity
with a given reduced inversion is determined by

LPPad(r|z)=

[
−
∂

∂r
[rz+1] +

∂2

∂r2
r

]
Pad(r|z) = 0.

(6.17)

If z < 0 this gives a Poisson distribution

Pad(r|z) = −z exp (zr), (6.18)

with a mean given by

〈r〉ad(z) = −
1

z
· (6.19)

For z > 0 however there is no normalizable distribution
for the adiabatic equilibrium. As the dynamics of the re-
duced quasi-probability distribution P (z; t̃) is found by
averaging over the adiabatic equilibrium for arbitrary z
this seems to be inconsistent. This problem may be over-
come by introducing an ad-hoc force in the generator LP
which regularizes the dynamics for z > 0

LP (ε) =
∂

∂r

[
εr2 − rz − 1

]
+

∂2

∂r2
r. (6.20)

Taking the limit ε −→ 0 in the end of all calculations is
equivalent to restricting the dynamics to z < 0, setting
P (z) = 0 for z > 0 and assigning the boundary condition
P (z = 0) = 0. This is also natural as we expect P (z) to
be peaked around the deterministic solution (4.2) which
is negative and assume P (z) to have neglectable contribu-
tions where time-scale separation is not valid (see Sect. 5).
Now we may proceed as in the last section for slow polar-
ization. The reduced dynamics of the reduced inversion is
in lowest order perturbation theory

∂

∂t̃
P (r; t̃) = `IP (r; t̃), (6.21)
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Fig. 8. Stationary probability distribution of the reduced
inversion Pstat(z) for slow inversion (α� 1/10) for 2γP /γI = 5
(left) and 2γP /γI = 10 (right).

where the generator `I is given by LP in (6.3) averaged
over the adiabatic equilibrium Pad(r|z) (6.17)

`I = α

[
∂

∂z

(
z −

1

z
− p

)
+

γI

2γP

∂2

∂z2

]
. (6.22)

The stationary distribution Pstat(z) of the reduced inver-
sion in this case is a product of a Gaussian with a power
of z

Pstat(z) =
1

M
(−z)

2γP
γI exp

(
−
γP

γI
(z − p)2

)
Θ (−z)

(6.23)

where M is the normalization constant

M = exp

(
−
γP p

2

γI

)(
γP

γI

)−2γP+γI
2γI

×
∞∑
m=0

1

m!

(
−

√
γP

γI
p

)m
Γ

(
2γP
γI

+m+ 1

2

)
.

(6.24)

This function is shown in Figure 8. The stationary distri-
bution of the polarization intensity Pstat(r) is obtained by
an integration

Pstat(r) =

∫
dzPad(r|z)Pstat(z). (6.25)

The form of this function is shown in Figure 9. This is
clearly not peaked around its mean so we will have to
discuss if this is still self-consistent to the assumed time-
scale separation. The moments of the polarization are con-
nected to moments of 1/z by

〈rm〉 =

∫ 0

−∞
dzPstat(z)

∫ ∞
0

dr(−z)rm exp (rz)

= (−1)mm!〈z−m〉. (6.26)

For 2γP = γI the moment 〈r2〉 = 〈z−2〉 diverges as may
be seen from (6.23). In this case our approach may get
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Fig. 9. Stationary probability distribution of the polarization
intensity Pstat(r) (proportional to photon number distribution)
for slow inversion (α� 1/10) for 2γP /γI = 5.
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Fig. 10. Mean polarization intensity 〈r〉 (proportional to
mean photon number) as a function of the pump strength p
for slow inversion (α� 1/10, here 2γP /γI = 5). The result of
the Gaussian approximation is very near the shown curve.

inconsistent and we have to assume a further condition
2γP � γI in order to have self-consistent results. Still
only low order moments 〈rm〉 with m < γP /γI are surely
treated correctly. The moments of the reduced inversion
are given by the expression

〈zl〉 =

(
−

√
γI

γP

)l

×

∑∞
m=0

(
−2p

√
γP

γI

)m Γ

(
1

2
(
2γP
γI

+ l +m+ 1)

)
Γ (m+ 1)

∑∞
n=0

(
−2p

√
γP
γI

)n Γ

(
1

2
(
2γP
γI

+n+1)

)
Γ (n+1)

(6.27)

where l may be any integer with

l > −
2γP
γI
· (6.28)

The divergence of moments 〈zl〉 for l < −2γP/γI has its
origin in the tail of the function Pstat(z) near z = 0. Near
z = 0 the assumed time-scale separation breaks down so
that this tail of Pstat(z) cannot be assumed to be treated
correctly by our approach. The main weight of the func-
tion however is in a region where the time-scale separation
holds and the approach is self-consistent. Only very high
moments of the photon distribution depend on this artifi-
cial tail. At threshold the first moments simplify to

〈z〉thr = −

√
γI

γP

Γ
(
γP
γI

+ 1
)

Γ
(
γP
γI

+ 1
2

)
' −1 for

2γP
γI
� 1

〈r〉thr =

√
γP

γI

Γ
(
γP
γI

)
Γ
(
γP
γI

+ 1
2

)
' 1 for

2γP
γI
� 1

〈z2〉thr =
2γP + γI

2γP

' 1 for
2γP
γI
� 1

〈r2〉thr = 2
2γP

2γP − γI

' 2 for
2γP
γI
� 1

Var (z)� 1 for
2γP
γI
� 1

Var (r) ' 1 for
2γP
γI
� 1.

(6.29)

In Figure 10 the mean polarization intensity is shown for
2γP/γI = 5 the graph hardly changes for higher val-
ues of the parameter 2γP /γI and there is only very lit-
tle difference to the results of the Gaussian approxima-
tion [22]. The second-order correlation function g(2)(0) is
shown in Figure 11. As in the Gaussian approximation an
increase of the second-order correlation function can be
seen near threshold. The Gaussian approximation shows
however only qualitatively right results, the increase of
the photon number fluctuations is much stronger. The de-
cay of the second-order correlation function to Poissonian
statistics above threshold cannot be investigated via adi-
abatic elimination because the time-scale separation be-
comes worse and ceases to exist for p� 1. This behavior
of the photon statistics for a bad-cavity laser with slow
inversion near threshold is very different from a good-
cavity laser or a bad-cavity laser with slow polarization
(see Sect. 6.1) where the correlation function drops from
the value g(2)(0) = 2 (thermal super-Poissonian statistics)
to g(2)(0) = 1 (Poissonian statistics) in a narrow neigh-
borhood of the threshold.

7 Power spectrum

The decay of photon-number correlations of the laser
mode inside the cavity in steady state is described by the
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Fig. 11. Second-order correlation function g(2)(0) as a func-
tion of the pump strength p for slow inversion (α� 1/10) for
different values of the parameter q = 2γP /γI . The thin lines
give the result of the Gaussian approximation.

time-dependent second-order correlation function

g(2)(t) =
〈b†(0)b†(t)b(t)b(0)〉

〈b†(0)b(0)〉2
· (7.1)

For large times t� tc where tc is the correlation time we
have [11]

g(2)(t) −→ 1 for t� tc. (7.2)

The fluctuations of the output field measured outside the
cavity are connected to the normalized second-order co-
herence by

〈I(t)I(0)〉 = κ〈b†b〉δ(t) + κ2〈b†b〉2g(2)(t) (7.3)

where κ〈b†b〉δ(t) is the shot-noise contribution. After
changing to a Fokker-Planck equation in reduced variables
g(2)(t) is calculated by

g(2)(t̃) =
1

〈r〉2

∫
drdz reLr t̃rPstat(r, z) (7.4)

where we used rescaled time according to (3.15) t̃ =
(γI/α)t. The power spectrum of the intensity fluctuations
inside the cavity is defined by the Fourier transform of the
second-order coherence

S(ω) =

∫
dt eiωt

(
g(2)(t)− 1

)
. (7.5)

In experiments however the fluctuations of the intensity
are measured outside the cavity. The measurable output
power spectrum Sout(ω) (defined as Fourier transform of
(7.3)) is connected to the intracavity power spectrum by

Sout(ω) = S(ω) +
1

κ〈b†b〉
· (7.6)

The difference between inside and outside fluctuations
is very important and interesting when dealing with so-
called non-classical light (e.g. noise reduction under shot-
noise level). In the bad-cavity laser described here we may
however neglect the difference as S(ω) will be seen to be
strictly positive (so there is no noise reduction in the pho-
ton statistics) and typical values of S(ω) will be large

compared to
1

κ〈b†b〉
. In fact S(ω) has the dimension of

a time and the typical inverse time scale for g(2)(t) is ei-
ther γI if α� 1 or γI/α if α is of order 1 or larger. Now

γIS
out(ω) = γIS(ω) +

1

〈r〉

√
8γI
nγP

and

√
8γI
NγP

< 10−5

if N ∼ 1010. In Figures 12, 13, 14 and 16 some power
spectra are plotted and it can be seen that the shot-noise
contribution is negligible.

We will calculate the second-order coherence and the
power spectrum to show the time-dependent behavior of
fluctuations and to show the role of the different time
scales involved. In the Gaussian approximation described
in Section 4 g(2)(t) and S(ω) are easily calculated

g(2)(t̃) = 1 +
1

r0(λ+ − λ−)

×

[(
〈∆r∆z〉0 +

α

α+ λ−
〈∆r〉20

)
eλ+t̃

−

(
〈∆r∆z〉0 +

α

α+ λ+
〈∆r〉20

)
eλ− t̃

]
(7.7)

where the correlation times λ± are given by (5.4). The
power spectrum is given by

S(ω) =
α

γI r0(λ+ − λ−)

×

[
−

(
〈∆r∆z〉0 +

α

α+ λ−
〈∆r〉20

)
2λ+

( α
γI
ω)2 + λ2

+

+

(
〈∆r∆z〉0 +

α

α+ λ+
〈∆r〉20

)
2λ−

( α
γI
ω)2 + λ2

−

]
.

(7.8)

These results for the second-order correlation and the
power spectrum are valid above threshold. Near threshold
we may again use adiabatic elimination to simplify (7.1)
considerably and integrate the remaining Fokker-Planck
equation for one degree of freedom numerically. In case of
slow polarization the this leads to

g(2)(t̃) =

∫
dr re`P t̃rPstat(r) (7.9)

where `P is given by (6.9) and Pstat(r) by (6.10). In case
of slow inversion some care has to be taken as initial slips
do occur as described in [17]. As the fast transient is ne-
glected in adiabatic elimination initial conditions have to
be shifted to give the right behavior on the slow time
scale. A systematic approach to deal with correlation func-
tions of the adiabatically eliminated variables in a Fokker-
Planck equation is not known to the author (for initial
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Fig. 12. Second-order correlation function g(2)(t) and power spectrum S(ω) above threshold in Gaussian approximation: (a)

r0 ≈ p = 100, α = 100,
2γP
γI

= 5; (b) r0 ≈ p = 100, α = 1,
2γP
γI

= 5; (c) r0 ≈ p = 100, α = 0.01,
2γP
γI

= 5.

Fig. 13. Slow polarization: second-order correlation function g(2)(t) and power spectrum S(ω) near threshold in adiabatic

elimination and Gaussian approximation (α = 10000,
2γP
γI

= 5) for different values of the pump strength p.
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Fig. 14. Slow inversion: second-order correlation function g(2)(t) and power spectrum S(ω) near threshold in adiabatic

elimination and Gaussian approximation (α = 0.00001,
2γP
γI

= 5) for different values of the pump strength p.
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Fig. 15. Slow inversion: second-order correlation func-
tion g(2)(t) near threshold Gaussian approximation (α =
0.00001, 2γP /γI = 5) for different values of the pump strength
p and very short time scales.

slips in the reduced probability distribution see [15,17])
but will probably be worked out by the author. As a re-
sult g(2)(0) is not the right initial condition for g(2)(t) in
case of slow inversion. The right expression to first order
is

g(2)(t̃) =

∫
dz

1

z
e`I t̃

1

z
Pstat(z) (7.10)

where `I is given by (6.22) and Pstat(z) by (6.23). A com-
parison of the Gaussian approximation to the results of
adiabatic elimination will clarify this topic of initial slips
in the following.

7.1 Power spectrum above threshold

Above threshold where polarization and inversion decay
on the same time scale τd which is set by the real part
of (γI/α)λ±

τd = −
α

γI<(λ+)
=

2αr0
γI(1 + αr0)

≈
1

γI
for r0 α� 1. (7.11)

Oscillations occur in the second-order coherence with a
period τosc determined by the imaginary part of (γI/α)λ±

τosc = 2π
2αr0

γI
√

4αr3
0 − (αr0 − 1)2

≈
1

γI

√
α

r0
for r0 α� 1. (7.12)

In Figure 12 the second-order coherence and the power
spectrum are plotted for some values of the parameters α
and r0 � 1. In the power spectrum one sees nicely the
peaks at ω = 2π/τosc with a width given by ∆ω ≈ 1/τd.

7.2 Power spectrum near threshold

Near threshold the Gaussian approximation becomes
inconsistent as the fluctuations 〈∆r∆z〉0, 〈∆r2〉0 and
〈∆z2〉0 in (4.5) are of the same order as the squared means
r0z0, r2

0 and z2
0 (4.2). Nevertheless the results of Section

7.1 show the same qualitative behavior as the results ob-
tained with adiabatic elimination near threshold.
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Fig. 16. No time scale separation: second-order correlation function g(2)(t) and power spectrum S(ω) near threshold in Gaussian

approximation (α = 1,
2γP
γI

= 5) for different values of the pump strength p.

In Figure 13 the second-order coherence and the power
spectrum are shown in the case of slow polarization
α � 10. The plots on the left side are obtained by
adiabatic elimination and numerical integration of (7.9)
while the plots on the right side show the results (7.7)
and (7.8) of the Gaussian approximation. Increasing the
pump strength p near threshold leads to less fluctuations
on short times while the decay of correlations becomes
slower.
For slow inversion α � 0.1 the plots of both approxima-
tions are similar on the slow time scale set by the decay of
the inversion as seen in Figure 14. However on very short
times of the order of the decay time of the polarization
a fast transient is seen in Figure 15 for the second-order
coherence function g(2)(t). This transient is neglected in
adiabatic elimination leading to an initial slip in the initial
condition for g(2)(t).

If there is no time-scale separation near threshold it is
not possible to simplify (7.4) systematically. In the regime
where adiabatic elimination is possible we have however
seen that Gaussian approximation gives a quite good (and
much simpler) reproduction of the results obtained more
systematically by adiabatic elimination. Assuming that
Gaussian approximation captures the main behavior for
α ≈ 1 S(ω) and g(2)(t) are plotted in Figure 16. The in-
set of oscillatory behavior is seen as the pump strength is
increased.

8 Conclusion

A simple model of a bad-cavity laser has been presented
that is based on Haken’s master equation for a large num-
ber N of incoherently pumped two-level atoms coupled to
one mode of a cavity. The bad-cavity limit allows for adia-
batic elimination of the mode. Above threshold a Gaussian
approximation yields the photon statistics.

Near threshold the remaining atomic dynamics has a
further time-scale separation in the cases α � 10 (slow
polarization) and α� 0.1 (slow inversion). In these cases
the slow dynamics is ruled by the decay of the slowest
transient and further adiabatic elimination of the fast vari-
able is possible. The remaining dynamics is simple enough
to compute the total photon-number distribution of the

steady state analytically which is usually a very difficult
task in more complex models.

In most lasers g(2)(0) decreases from the value two
indicating light from a thermal source to the value one
indicating Poissonian statistics as in coherent states as
the pump strength is increased near threshold. In con-
trast to this an increase of g(2)(0) is seen near threshold
in the slow-inversion regime α� 0.1 and only well above
threshold there is a slow decrease to the value one as the
pumping is increased (see Figs. 3 and 11).

The power spectrum illustrates nicely the different
time scales involved in different regimes of the dynamics. If
there is no time-scale separation (above threshold or near
threshold for α ≈ 1) the coupled dynamics of polariza-
tion and inversion leads to oscillations in the second-order
coherence function g(2)(t).

I would like to thank Fritz Haake, Carsten Seeger, Peter
Goetsch, Mikhail Kolobov, Robert Graham and J.P. Woerd-
man for helpful discussions and corrections.
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